CMACGM Group

Container Ships Consumption Models

Ship Efficiency 2015 by STG: 5th International Conference, Hamburg

Jean-Baptiste BOUTILLIER - Sadok MALLEK Hamburg, 28/09/2015

CMASHIPS

Excellence in Shipmanagement

Content

1. Introduction

- The group presentation
- The need of consumption modelling
- 2. Presentation of the model developed
- 3. Model improvements
- 4. The follow-up of the container ships performances
- 5. Conclusion & Outlook

Sadok MALLEK

The group presentation

CMA CGM, a leading world wide shipping group

Led by its founder, Mr Jacques R. Saadé, CMA CGM is the world's third largest container shipping company.

CMA CGM Group is today a global enterprise operating on all the world's shipping routes and offers the full range of logistics and transportation services to its customers.

From its base in Marseille, the CMA CGM Group is present in more than 160 countries through its network of over 655 agencies, with more than **20,000 employees worldwide** (4,500 in France).

Jean-Baptiste BOUTILLIER

Sadok MALLEK

The group presentation

2014 Key figures

- Jean-Baptiste BOUTILLIER
- Sadok MALLEK

CMA Ships presentation

* The implementation of the transaction is subject to the prior clearances from the relevant competition authorities; until then OPDR and CMA CGM remain competitors

- Jean-Baptiste BOUTILLIER
 - Sadok MALLEK

Global context

Huge variations of the fuel price.

Strong pressure of the energy cost on the group results.

New regulations. eg :Energy
Efficiency Design Index (EEDI).

CMA CGM commitment

(Source: Alphaliner)

Sadok MALLEK

• CMA CGM commitment in CO₂ reduction:

CMA CGM has established three major strategic areas of focus:

- Energy, Climate Change, and Air Quality
- ✓ Oceans, Marine Environment, and Biodiversity
- Innovations, Solutions, and Sustainable Transport Services

CMA CGM set itself the ambitious goal of reducing CO2 emissions by 50% per container per km by 2015. In 2013, CMA CGM carbon efficiency has improved by 40%, one of the sector's best performances.

The need of consumption modelling

Optimization /

Reduction of

fuel

consumption

Follow and improve the energy & ecological performances of the container ships

Necessity of a tool to follow the consumption Integration of the model in the various dashboards (tools of follow-up)

Exact calculation of the quantity of combustible to be consumed

Environmental

commitment

Economic context

Sadok MALLEK

The approach

Vessels performances follow-up

Comparison Theoretical data Vs Real data

Theoretical consumption model

Navigation data

BIG DATA

Hydrodynamic studies: Ship resistance Econometric / Statistical analysis vs analytic study Setting the parameters

- Jean-Baptiste BOUTILLIER
- Sadok MALLEK

Methodology

Jean-Baptiste BOUTILLIER

Sadok MALLEK

The preliminary Model development

Preparation of navigation data

- Data export from VRS
- Data cleansing

Application of the regressions

• Definition of variables then launch of regressions

The theoretical approach

• Theoretical equation of consumption – Mathematical support

Analysis and interpretation of the regressions

- Matching : Theoretical model support with Regressions results
- Validation of the calculations

• Sadok MALLEK

The model parameters

Jean-Baptiste BOUTILLIER

Sadok MALLEK

The parameters selected

Sadok MALLEK

Ship Efficiency - Hamburg - 28, 29 September

The theoretical approach

• Jean-Baptiste BOUTILLIER

• Sadok MALLEK

The results of regressions

13800 TEU Class – CMA CGM LAPEROUSE

Sadok MALLEK

The results of regression

Source	55	df	MS		Number of obs	= 3357
Model Residual	666.255205 49.0267477	16 41. 3340 .014	6409503 4678667		Prob > F R-squared	= 2830.83 = 0.0000 = 0.9315
Total	715.281952	3356 .21	3135266		Root MSE	= .12116
🔶 ldayconso	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
Ispeed	2.416784	.012799	188.83	0.000	2.391689	2.441879
ldraft	.0486282	.0202928	2.40	0.017	.0088406	.0884157
bystern	.0105157	.0052602	2.00	0.046	.0002022	.0208292
bybow	0452146	.0065239	-6.93	0.000	0580058	0324235
wind_speed_2	.0292606	.0056636	5.17	0.000	.0181562	.040365
wind_speed_3	.0507822	.0060141	8.44	0.000	.0389906	.0625738
wind_speed_4	.0914604	.0070638	12.95	0.000	.0776107	.1053102
vind_speed_5	.2004761	.0082036	24.44	0.000	.1843914	.2165607
wind_dir_1	.0419107	.006404	6.54	0.000	.0293545	.0544669
wind_dir_2	.0384713	.0063797	6.03	0.000	.0259627	.0509799
wind_dir_4	0700084	.006826	-10.26	0.000	083392	0566248
wind_dir_5	0960802	.0060287	-15.94	0.000	1079005	0842598
vespucci	.0306051	.0066608	4.59	0.000	.0175455	.0436647
colomb	.0232977	.0066293	3.51	0.000	.0102997	.0362956
cortereal	.0149423	.0068068	2.20	0.028	.0015963	.0282883
magellan	.0102133	.006/2/5	1.52	0.129	0029//	.023403/
_cons	-2.30559	.0210389	-45.1/	0.000	-2.403001	-2.205519
	~					
	α_i					

$$Consumption = \left(1 + \sum_{i} (e^{\alpha_{i}} - 1) x_{i}\right) * e^{(constant + \alpha_{speed} * \ln(speed) + \alpha_{draft} * \ln(draft))}$$

• Jean-Baptiste BOUTILLIER

Fuel Consumption Models Ship Efficiency - Hamburg - 28, 29 September

Sadok MALLEK

Final equation of the consumption

$$\begin{split} Consumption &= exp^{\,(Constant + \alpha_{speed} * ln(speed) + \alpha_{draft} * ln(draft))} * \\ &\quad (1 + \beta_{trim} + \beta_{wind_speed} + \beta_{wind_sector} + \beta_{vessel}) \end{split}$$

Jean-Baptiste BOUTILLIER

Sadok MALLEK

Model improvements

• Update of input data

(Evolution of the daily reports , updating the vessels list)

- Modification of the existent filters (Navigation duration, Extreme value of the speed and the consumption)
- Application of new filters (Trim, speed range according to container ships class)
- the reference values (vessel, trim)

Improve the reliability / robustness of the model

- Jean-Baptiste BOUTILLIER
- Sadok MALLEK

Trim Optimization

The optimal trim depends on speed and draft.

Jean-Baptiste BOUTILLIER

Sadok MALLEK

٠

Trim optimization

• For the old model, the trim takes a fixed coefficient independent of speed & draft.

draft range).

In the numerical calculations (CFD) and the model tests results to obtain a theoretical coefficient for the trim. (Correlation: Developed Model – Numerical calculations)

Sadok MALLEK

Development of a tool to present the results

• Storing the regression results (Equation coefficients)

• Presenting the results as consumption curves.

Vessel		Class	Draft (m)		Trim	Wind Force (Bf)	Wind Sector
CMA CGM LAPEROUSE	-	Class 13800	14		Even Keel	3	Travers
	^		12,5	^	Choisir the TRIM	Choisir WIND FORCE (bf) 🔺	Choisir WIND SECTOR
CMA CGM A VON HUMBOLDT			13.5		1m Bu Bow	0	3/4 arrière
CMA CGM MARCO POLO			14		Even Keel	1	3/4 Face
13800			14,5		1m By Stern 2m Bu Stern	2	Arrière
CMA CGM LAPEROUSE			15,5		2mby Sterr	4	Travers
CMA CGM AMERIGO VESPUCCI	×		16	~		5 🗸	

- Jean-Baptiste BOUTILLIER
- Sadok MALLEK

Presentation of the results

Sadok MALLEK

•

Presentation of the results

Presentation of the results

- Jean-Baptiste BOUTILLIER
- Sadok MALLEK

Inclusion of the evolution of ships

Sadok MALLEK

Ship Efficiency - Hamburg - 28, 29 September

Solutions for existing fleet to reduce consumption

- The Slow Steaming (Decreasing the navigation speed)
- Installation of a Turbo-Charger Cut Out (Deactivation of a Turbo-Charger / Low load running)
- The Dry Dock

- Jean-Baptiste BOUTILLIER
- Sadok MALLEK

Solutions for existing fleet to reduce consumption

Bulbous bow modification

- Jean-Baptiste BOUTILLIER
- Sadok MALLEK

Solutions for existing fleet to reduce consumption

Propeller Boss Cap Fins (PBCF)

- Jean-Baptiste BOUTILLIER
- Sadok MALLEK

• And next ? Global optimization concept !

Three areas to adjust the vessel hydrodynamics performances and the propulsion efficiency to the actual and future operation profiles.

Sadok MALLEK

Ship Efficiency - Hamburg - 28, 29 September

The follow-up of the performances

Example: CMA CGM OTELLO - Bow modification

Sadok MALLEK

Ship Efficiency - Hamburg - 28, 29 September

The follow-up of the performances

Example: CMA CGM MARCO POLO – Optimal configuration for Draft & Trim

• Jean-Baptiste BOUTILLIER

Sadok MALLEK

The follow-up of the gap (Model Vs Reported)

The period of over/underconsumption can coincide with a specific crew ...

Jean-Baptiste BOUTILLIER

Sadok MALLEK

Industrialization of the model

Integration of the models in the dashboards

Automation of modelling (ongoing)

Jean-Baptiste BOUTILLIER

Sadok MALLEK

Industrialization of the model

Jean-Baptiste BOUTILLIER

Sadok MALLEK

To conclude

• The Model limits are related to quality and amount of data(especially for small vessels).

(Improving the quality of reports – Increasing frequency – Installing new instrumentation for a better collect of weather data)

➔ Ongoing Project: Automatic Collection Data

- The model is implemented in several dashboards
- Maintaining and improving the model (Automation of modelling)
- Integration of the model in other projects: Fleet Center, Lines, Bunkering, Chartering...

Simplicity, ease of use and portability.

Sadok MALLEK

Trust our solutions and our passion...

Jean-Baptiste BOUTILLIER ho.jboutillier@cmaships.com

Sadok MALLEK mrs.smallek@cmaships.com

Sailing ahead with passion since 1978

CHA COM JULES VERNE

CMA COM JULES VERNE

CMA CGM

28/09/2015