
Presentation on:

Fuel efficient tanker design

Karsten Hochkirch DNV GL SE Germany

The German Society for Maritime Technology Schiffbautechnische Gesellschaft e.V.

Maritime Advisory in DNV GL

Fuel Efficient Tanker Design

2 DNV GL © 2017 Ship Efficiency Conference, Hamburg 2017-09-26

Agenda

- 1. Today's design tools
- 2. Yesterday's ideas
- 3. Tomorrow's savings

Fuel Efficient Tanker Design

3 DNV GL © 2017 Ship Efficiency Conference, Hamburg 2017-09-26

Agenda

1. Today's design tools

- 2. Yesterday's ideas
- **3.** Tomorrow's savings

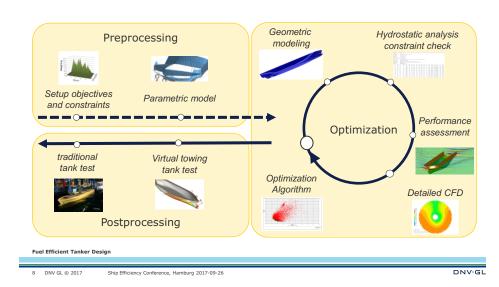
Fuel Efficient Tanker Design

4 DNV GL © 2017 Ship Efficiency Conference, Hamburg 2017-09-26

DNV·GL

Hull lines development – traditional way

- > Open drawer
- Select similar ship
- Adjust dimensions
- Some selected CFD
- Modeltesting
 - Bossing
 - Rudder configuration
 - Propeller position
- > Done!
- > Variations looked at < 10</p>


5 DNV GL © 2017 Ship Efficiency Conference, Hamburg 2017-09-26

DNV·GL

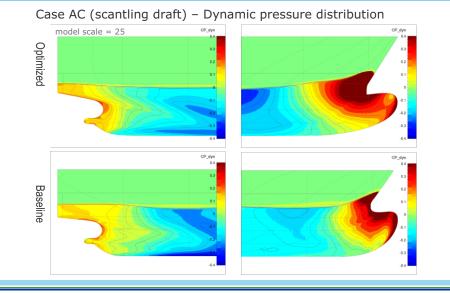
Today's design tools – DNV GL's unique optimization process

Optimization of a LEG carrier – multi-objective optimization

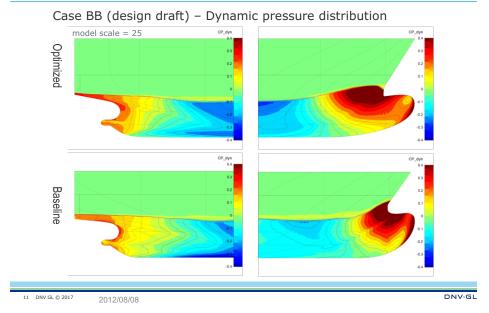
Case AC (Scantling) weighted by 25%

- Draft : 9.50 m
- Speed: 14.3 kn

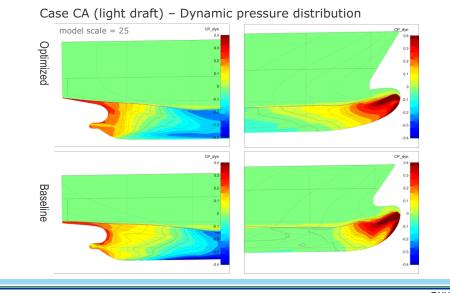
Case **BB** (Design) weighted by 50%


- Draft: 7.50 m
- Speed: 15.3 kn

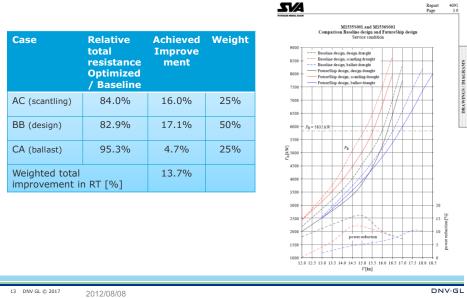
Case CA (Ballast) weighted by 25%


- Draft aft: 6.50 m
- Draft fwd: 4.50 m
- Speed: 15.8 kn

9 DNV GL © 2017

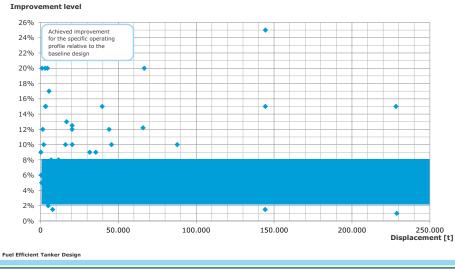


LEG Tanker – Baseline & Optimized


LEG Tanker – Baseline & Optimized

LEG Tanker – Baseline & Optimized

12 DNV GL © 2017 2012/08/08


DNV.GL

LEG Tanker – Results

13 DNV GL © 2017

Benefit of hull lines optimizations for various ship types

14 DNV GL © 2017 Ship Efficiency Conference, Hamburg 2017-09-26

Motivation

Ship type		RoPax Ferry	14000 TEU ULCV	Gas Tanker	76k Bulker
Lpp / B / T	m	200 / 27 / 13.0	397 / 56.4 / 16.5	145/21.6/9.5	225x32.2x14.5
Speed	kn	25	26	16.5	14.5
Displacement	t	80,000	240,000		76,000
Installed power	kW	37,000	54,000	6,000	8,500
Service condition (75%)	kW	27,750	40,500	4,500	6,375
Time at sea	days/year	200	250	250	2
	h/year	4800	6000	6000	528
Engine	Fuel type	IFO380	IFO380	IF0380	IF038
Fuel oil price	\$/t	325	325	325	3
Specific fuel consumption	kg/kWh	0.175	0.175	0.175	0.1
Sludge	%	1.5%	1.5%	1.5%	1.5
Savings					
Assumed improvement	%	5.0%	4.0%	11.0%	5.0
Fuel oil savings	t/day	5.9	6.9	2.1	1
Fuel savings	t/year	1183.0	1726.5	527.5	298
Reduced investment in main engine	\$	301,327	351,820	107,501	69,2
Annual savings per vessel	\$/year	384,469	561,117	171,453	97,15
Annual savings for a fleet of	5	1,922,347	2,805,587	857,263	485,78
Emmisions saved per year (approx.)					
Carbon dioxide (CO ₂)	t/year	3,903.8	5,697.5	1,740.9	986
SO ₂	t/year	94.64	138.12	42.20	23.
NOx	t/year	99.90	145.80	44.55	25.

19 DNV GL © 2017 Ship Efficiency Conference, Hamburg 2017-09-26

DNV.GL

Agenda

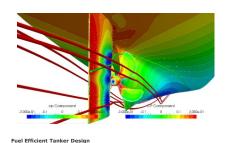
- **1.** Today's design tools
- 2. Yesterday's ideas
- **3.** Tomorrow's savings

Fuel Efficient Tanker Design

20 DNV GL © 2017 Ship Efficiency Conference, Hamburg 2017-09-26

Rotational losses

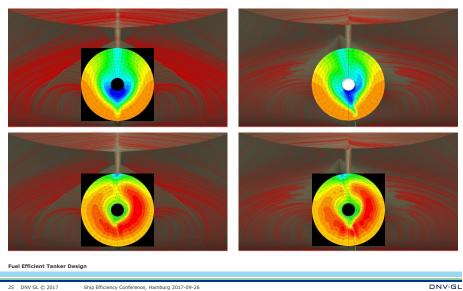
- Since engineers have understood the nature of "rotative" propulsion it is known that a part of the energy is left behind as rotation in the flow field.
- pre-rotation or pre-swirl in front of or equalization behind the propeller saves propulsive energy.
- Several measures and devices were introduced to produce pre-swirl or reuse the rotating flow behind the propeller.
- Most of the ideas that are practically used are based on ducts or fins.


Fuel Efficient Tanker Design

21 DNV GL © 2017 Ship Efficiency Conference, Hamburg 2017-09-26

DNV·GL

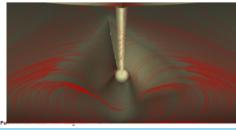
Yesterday's ideas...


- Nönnecke pioneering in the 60's
- Asymmetrical aft ship

22 DNV GL © 2017 Ship Efficiency Conference, Hamburg 2017-09-26

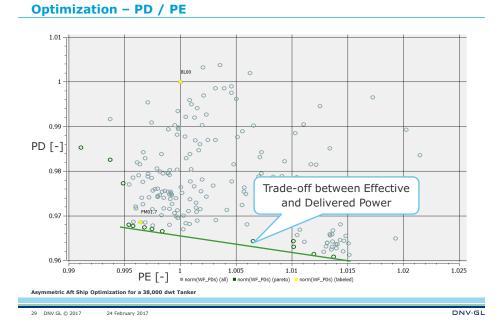
Symmetry vs. Asymmetry

25 DNV GL © 2017 Ship Efficiency Conference, Hamburg 2017-09-26


Asymmetric stern

Pros

- Introduces pre swirl (similar to fins)
- Improves propulsive efficiency
- No appended devices, better structural integrity


Cons

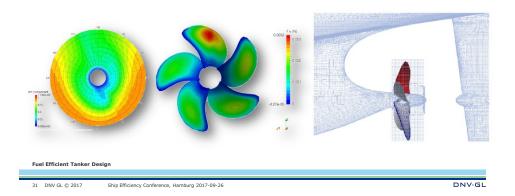
- More complex to build
- Optimization and analysis is more complex
- Model tests or advanced CFD methods are required
- Traditional design is unlikely to yield optimum
- Likely increase in Resistance

28 DNV GL © 2017 Ship Efficiency Conference, Hamburg 2017-09-26 DNV.GL

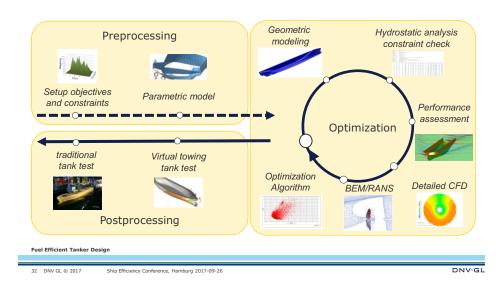
Agenda

- 1. Today's design tools
- 2. Yesterday's ideas
- 3. Tomorrow's savings

Fuel Efficient Tanker Design

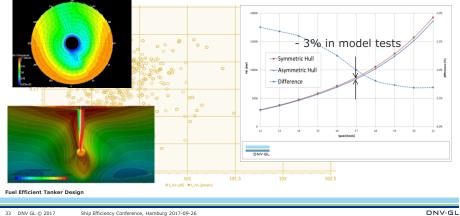

30 DNV GL © 2017 Ship Efficiency Conference, Hamburg 2017-09-26

New design tools

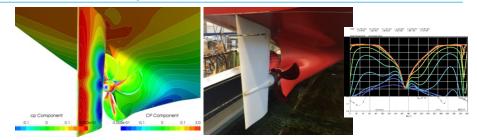

Combining

- state of the art Propeller computation tool
- Viscous RANS analysis

Gives a perfect team to deliver best accuracy + good response time



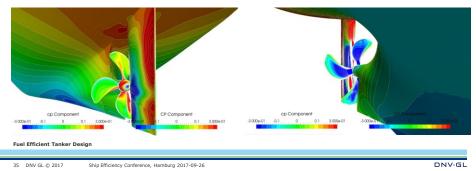
Today's design tools – DNV GL's unique optimization process


3% decrease of power found for a container feeder vessel

• In a recent project, a 3000 TEU container carrier was tuned to achieve minimum power consumption. Starting from a well optimized symmetric baseline design the additional freedom for an asymmetric aft ship design achieved a propulsion power reduction of **3%** as confirmed by the model test.

33 DNV GL © 2017 Ship Efficiency Conference, Hamburg 2017-09-26

3.8 % decrease of power found for a tanker vessel


Allowing asymmetric stern shapes in the optimization for a well designed 38k dwt tanker yielded an some 3.4% and 3.8% improvement on performance in ballast and design condition, respectively.

Fuel Efficient Tanker Design

34 DNV GL © 2017 Ship Efficiency Conference, Hamburg 2017-09-26

Conclusion

- Combining advanced CFD technology with formal parametric optimization the great idea of the asymmetric aft body can be driven to its maximum potential.
- The asymmetric stern allows further improvement of propulsive efficiency exploiting similar effects as pre-swirl devices, albeit with much higher structural robustness.
- Predicted improvements were confirmed in model tests.
- Gains are expected to be higher for Tankers and Bulkers than for Containerships.

