SHIP EFFICIENCY by STG

4th International Conference Hamburg, September 23-24 2013

Power- and Cost-Savings for Container Vessels by Hydrodynamic Energy Saving Devices (ESDs)

Friedrich Mewis, Mewis Ship Hydrodynamics, Dresden Fred Deichmann, Columbus Shipmanagement, Hamburg

Power- and Cost-Savings for Container Vessels by Hydrodynamic Energy Saving Devices (ESDs)

Contents

- ESDs, General definition, Initial Thoughts, History
- ESDs, Overview for large Container Vessels
- Development of Becker Twisted Fin[®] (BTF)
- Experience with BTF at Full Scale

Power- and Cost-Savings for Container Vessels by Hydrodynamic Energy Saving Devices (ESDs)

General Definition:

A Hydrodynamic Energy Saving Device

is a component which shall reduce the losses around the working propeller or around the ship; or both. It is not an inherent part of the ship. ESDs are suited for both new-buildings and retrofits.

Propeller, Initial Thoughts, Energy Loss Analysis

Large Container Vessels								
Energy losses at a free running propeller (well designed), CTh = 1.0								
Kind of loss	Colour of arrow	Loss in % (accuracy ±1%)						
Blade friction	-	7%						
Axial momentum	black	16%						
Rotation of slipstream	blue	5%						
Hub vortex	green	2%						
Tip vortex	red	2%						
		32%						

Mewis/Deichmann, "Cost Savings by ESDs", 4th SEC, Hamburg, Sept. 2013

MSH HAMBURG

Propeller, History, Early Energy Saving Devices

Ressel is generally accepted as the inventor of the propeller

1826 Ressel

"Civetta", 1829

Ericssons Entwurf 1836 mit zwei gegenläufigen Propellern

1836 Eriksson CR-Propeller

1924/1937 Kort Nozzle

Patent von 1902 über einen Propeller mit Endscheiben, Potter (1905)

1903 Potter Endplates

RING II DEDREGOL OSTILLAE

1949 van Lammeren Pre-Duct

Mewis/Deichmann, "Cost Savings by ESDs", 4th SEC Sept. 2013, Hamburg

1904/1929 Wagner Contra Propeller Principle

1952 Costa Rudder Bulb

Energy Saving Devices, Overview

Hydrodynamic Energy Saving Devices

SAVER-Fin attached on a Model of Tanker

Energy Saving Devices, current market status for large Container Vessels

Reduction of rotational losses in the slipstream

Reduction of hub vortex losses

Reduction of tip vortex losses

PBCF

Mitsui

Tip-Fin Propeller MAN/Kappel

Post Stator SHI

Twisted Rudder **BMS**

MSH HAMBURG

Ishikawajima-Harima

Mewis/Deichmann, "Cost Savings by ESDs", 4th SEC, Hamburg, Sept. 2013

Energy Saving Devices, current market status for large Container Vessels

Hydrodynamic Energy Saving Devices for large Container Vessels								
Name	Company	Development		Power reduction			Possibility	
		Country	Year	Average [*]	Maximum [*]	Claimed	to retrofit	
		* valid for well designed ship lines and propeller						
Reduction of rotational losses in the propeller slipstream (maximum loss: 6% at CTh=1)								
Twisted Rudder	BMS and other	Germany	2001	1%	2%	2%	new rudder	
Pre-Swirl Stator	DSME	Korea	2002	4%	5%	4%	mostly yes	
Thrust Fins	нні	Korea	2008	2%	3%	5%	yes	
Rudd er Bulb Fin	DSME	Korea	2011	3%	4%	4%	new rudder	
(BTF)	BMS	Germany	2012	4%	5%	3%	mostly yes	
Reduction of propeller hub vortex losses (maximum loss: 3% at CTh=1)								
Costa-Bulb	Mayer Form / free	Germany	1952	1%	3%		yes	
PBCF	Mikado / free	Japan	1987	1%	3%	5%	yes	
Reduction of propeller tip vortex losses (maximum loss: 3% at CTh=1)								
CLT-Propeller**	Sistemar	Spain	1986	2%	3%	7%	new propeller	
Tip-Fin Propeller**	MAN/Kappel	Danmark	1990(?)	2%	3%	4%	new propeller	
**both solutions are no real ESDs, they are new propeller types								
				MSF	НАМВ		SÜD	

Becker Twisted Fin[®], first BTF at full scale, 2012

MV Santa Catarina, Hamburg Süd, 7090 TEU CV V = 23/19 kts

Mewis/Deichmann, "Cost Savings by ESDs", 4th SEC, Hamburg, Sept. 2013

Reduction of rotational losses

Reduction of wake losses

Becker Marine Systems Germany

Deliveries: more than 300 Orders: more than 600

Becker Twisted Fin®, **BTF, Roots**

Becker Twisted Fin®, **Difference to the MD**

- MD consists of a fin-system situated in a pre-duct
- MD is suited for vessels with V<20 kts and CTh>1.3, this encompasses all full-blocked ships
- MD is suited to both new-build and retrofit applications

What are the differences to the Mewis Duct[®]?

- BTF has additional outer fins for generation of more pre-swirl
- All Fins are twisted for minimising the resistance
- BTF is suited for Vessels with V>18 kts and CTh<1.3, this encompasses all container vessels
- BTF is suited to new-buildings and, in exceptional cases, for retrofits too
 MSH HAMBURG SUD

Mewis Duct[®] + outer fins + fins twisted = BTF

Mewis/Deichmann, "Cost Savings by ESDs", 4th SEC, Hamburg, Sept. 2013

Becker Twisted Fin®, Suitability and main effects

Suitability: For faster ships, speed higher than 18 knots

Main Effects:

 Power reduction up to 5% (average 3.8%), this means up to 5% lower emissions

- Reduction of propeller induced pressure pulses and tip cavitation, this means less vibration in the aftship
- Small improvment of course stability, this gives a small additional power reduction

MSH HAMBURG

Becker Twisted Fin®, **Design and optimisation by CFD**

Mewis/Deichmann, "Cost Savings by ESDs", 4th SEC, Hamburg, Sept. 2013

Becker Twisted Fin[®], Examination and optimisation by model tests

Mewis/Deichmann, "Cost Savings by ESDs", 4th SEC, Hamburg, Sept. 2013

Becker Twisted Fin[®], Model test results, HSVA

Becker Twisted Fin®, Full scale, Power reduction

Full Scale:The first comparison after 9 months shows:3.5% gain in average over the operational profile4 - 7% gain in heavier load draught, V>18 kts

Becker Twisted Fin[®], Full scale, Power reduction IMPACT IN HEAVIER LOAD (DRAFT > 11 M)

Mewis/Deichmann, "Cost Savings by ESDs", 4th SEC, Hamburg, Sept. 2013

Becker Twisted Fin®, Cavitation behaviour

Model Scale: Tests at HSVA, very low pressure pulses with BTF No cavitation on the BTF itself

Full Scale: Observations show no cavitation on the BTF itself, less vibration in the ship's structure than without, the hub vortex disappears completely with BTF

Becker Twisted Fin[®], Cavitation behaviour, hub vortex

without **BTF**

with **BTF**

Becker Twisted Fin[®], SANTA CATARINA, BTF-Installation

024

Previous connection of PSS-fins

Mewis/Deichmann, "Cost Savings by ESDs", 4th SEC, Hamburg, Sept. 2013

Becker Twisted Fin®, SANTA CRUZ, BTF-Installation

Electric heating pads

Mewis/Deichmann, "Cost Savings by ESDs", 4th SEC, Hamburg, Sept. 2013

MS

Becker Twisted Fin®, **SANTA CRUZ**, **BTF-Installation**

Becker Twisted Fin®, **SANTA CRUZ**

Mewis/Deichmann, "Cost Savings by ESDs", 4th SEC, Hamburg, Sept. 2013

Becker Twisted Fin®, SANTA CRUZ

MSH HAMBURG

0

Mewis/Deichmann, "Cost Savings by ESDs", 4th SEC, Hamburg, Sept. 2013

Summary

Power- and Cost-Savings for Container Vessels by Hydrodynamic Energy Saving Devices

- For large Container Vessels there are not many proven ESDs on the market.
- The achievable power reductions are maximum 2 to 5%
- The Becker Twisted Fin[®] is one of the latest and most effective developments in the market
- The average power reduction for the BTF is 4%
- The BTF reduced the pressure pulses and hence the vibrations of the ship
- The payback time is less than one year

Power- and Cost-Savings for Container Vessels by Hydrodynamic Energy Saving Devices

We thank you very much for your attention

