

Three Years of Experience with the Mewis Duct[®] - A Contribution to Ship Efficiency

by Jan Øivind Svardal, Grieg Shipping Group, Bergen, Norway Friedrich Mewis, Mewis Ship Hydrodynamics, Dresden, Germany

Three Years of Experience with the Mewis Duct[®] – A Contribution to Ship Efficiency

Contents

1. Experience with the STAR ISTIND and other vessels, after two years in service with Mewis Duct[®]

MSH

- 2. Achieved power savings by Mewis Duct[®], model scale/full scale
- 3. Observation of Cavitation, Pressure pulses, Manoeuvrability
- 4. Case study and summary

Svardal/Mewis, Experience with Mewis Duct^{*}, 3rd Ship Efficiency Conference, Hamburg 2011

Mewis Duct[®] - How it works

- 1. Improving the wake by the pre-duct,
 - reducing the axial losses
 - the duct generates thrust
 - the duct flow is stabilising the fin flow
 - the duct works as endplates to the fins
- 2. Reducing the rotational losses by the pre-fin-system
- 3. Reduction of the hub vortex losses by concentration the pre-swirl to the inner radii
- 4. Reduction of the blade tip vortex losses

Each component contributes to a power reduction!

MSH

Svardal/Mewis, Experience with Mewis Duct[°], 3rd Ship Efficiency Conference, Hamburg 2011

Mewis Duct[®] - History

First thoughts to a novel Energy-Saving
Device for full form vessels2007Patent pendingMarch 2008Launching of Mewis Duct® at SMM 2008September 2008First Installation in full scaleSeptember 2009

Actual state:	Dec. 2009	Dec. 2010	June 2011	Sept. 2011
In service	3	12	25	30
Orders, total	12	70	118	140

Svardal/Mewis, Experience with Mewis Duct^{*}, 3rd Ship Efficiency Conference, Hamburg 2011

becker marine systems

MSH

Mewis Duct[®] - STAR ISTIND

STAR ISTIND Grieg Star Shipping first vessel with MD in full scale September 2009

ERCWT

Svardal/Mewis, Experience with Mewis Duct^{*}, 3rd Ship Efficiency Conference, Hamburg 2011

-

-

becker marine systems

Mewis Duct[®] - STAR ISTIND, Model tests

45,000 tdw MPC

Svardal/Mewis, Experience with Mewis Duct^{*}, 3rd Ship Efficiency Conference, Hamburg 2011

MO4605-1001 - Grieg I-Class (Spee-Power Trial Analysis).xls

Print: 02.11.09

Mewis Duct[®] - STAR ISTIND,

Experience after two years in service

- The duct is inspected by divers in connection with propeller polishing every 6 months – no cracks detected so far.
- Crew report generally better course stability in practice. No measurements available to back up this statement.
- Some of the challanges in practice are how the estimated savings should be used:
 - By utilising the speed gain in transit and hence arrive earlier at destination?
 - Fuel consumption pr day will than be about same as before, exept that you will arrive slightly earlier and save some steaming time (and fuel).
 - Should we give a lower rpm order for those sister vessels with MD compared to vessels without MD?
 Thus the speed and theoretical arrival time should be same for all sister vessels, but power savings will than occur daily for the vessels with MD.

Svardal/Mewis, Experience with Mewis Duct[®], 3rd Ship Efficiency Conference, Hamburg 2011

Mewis Duct[®] - Experience after two years in service

Main effect: Power saving

- It is very difficult to measure the power savings reliably during practical ship service; it needs fixed long-time rules
 The most reliable method is to undertake trial trips with and without the MD fitted to a newbuilding within a short period of time
- Crew reports: The ship is faster than before

Side effects:

- Better course stability; full scale measurements and crew report
- Lower vibration level; crew report and model measurements
- More stable propeller rotation at heavy sea; crew report

Mewis Duct[®] - STAR ISTIND

STAR ISTIND Grieg Star Shipping first vessel with MD in full scale September 2009

TTTT TAT

Main part	iculares:
Lpp	187.00 m
В	31.00 m
Tdesign	12.00 m
СВ	0.802
DP	7.00 m
Vdesign	16 kts

STAR ISTIND BERGEN

Mewis Duct[®] - Experience in using CFD

- CFD calculations are very well suited for design and optimisation of passive Energy-Saving Devices like Mewis Duct[®]

- The result of CFD usage is about 2% additional power saving

- The global optimisation of the MD design parameters is possible with a high accuracy

- The accuracy in determination of power savings by CFD-methods is abt. +/- 1.5%

- The accuracy in determination of power savings by model tests is abt. +/- 0.5%

MSH

Svardal/Mewis, Experience with Mewis Duct[®], 3rd Ship Efficiency Conference, Hamburg 2011

Mewis Duct[®] - Experience Influence of wake field

There are three types of nominal transversal wake fields			
Bilge Vortex	large	small	medium
Ship's Resistance Losses at wake field Power reduction by MD	high high 5%-10%	low low 2%-5%	medium medium <mark>3%-8%</mark>
Course Stability Improvement by MD	sufficient low	not sufficien high	it medium medium
Reduction of pressure pulses by MD	high		medium

Mewis Duct[®] - Experience Model tests

Mewis Duct[®] - Model test results

	Towing			V			Power r	eduction	Safe
No.	Tank	Ship Type	DWT	kts	СВ	CTh		Ballast T	
1	HSVA	BC	118k	14,5	0,847	2,27	6,9	6,0	
2	SVA	BC	12k	15,5	0,794	1,88	8,0	7,4	
3	HSVA	BC	45k	16,0	0,802	1,43	6,0	5,4	STAR ISTIN
4	SSPA	BC	41 k	15,2	0,795	2,10	6,0	11,0	
5	SSPA	VLCC	318k	16,0	0,813	2,24	6,4	7,8	
6	HMRI	VLCC	318k	16,0	0,813	2,24	6,2	7,0	
7	SSPA	BC	180k	15,2	0,847	1,98	5,0	8,5	
8	HSVA	СОТ	158k	14,6	0,821	1,40	3,9	-	
9	HSVA	HLC	20.5k	17,5	0,765	1,83	1,5	-	
10	HSVA	BC	57k	14,4	0,848	2,05	5,4	7,2	
11	HSVA	BC	163k	14,5	0,817	2,25	5,2	6,6	
12	HSVA	BC	75k	16,0	0,879	1,86	3,1	7,1	
13	SVA	RoRo	38.5k	20,2	0,687	1,10	2,7	3,4	
14	MARINTEK	BC	37.5k	15,0	0,776	2,32	7,6	7,8	
15	MARINTEK	BC	40k	15,0	0,808	2,75	9,0	10,0	XXX
16	MARIN	VLCC	306k	15,3	0,821	2,10	8,7	7,6	
17	SVA	BC	45k	15,6	0,800	1,98	6,5	8,9	
18	HSVA	BC	151k	15,6	0,815	2,24	5,3	-	
19	MARINTEK	BC	35k	14,2	0,830	2,31	6,5	9,0	
20	SVA	СОТ	74.7k	15,0	0,856	1,74	4,9	5,4	
21	SVA	BC	82k	16,8	0,876	2,00	5,1	-	
22	HSVA	BC	286k	15,4	0,850	2,14	7,6	10,2	
23	HSVA	MPC	31k	18,0	0,755	1,16	3,6	3,3	
24	HSVA	MPV	47,8	15,5	0,795	1,37	2,4	-	
25	SSPA	BC	82k	14,5	0,870	1,79	5,7	10,5	
26	FORCE	BC	35k	14,0	0,818	1,43			
			Average	e Design	/ Ballast		5,6	7,5	
			Ave	rage all t	ests		6	,4	1

Mewis Duct[®] - Model test results

15

Mewis Duct[®] - Model test results

One very interesting side result:

Example:	40,000 tdw BC, Design draught,	
Resistance tests:		CFD-calculation results
Duct only	-3.0%	-3.5% (Resistance. red.)
Duct and Fins	-3.5%	-4.5%
Self-propulsion test:		
Duct only	-6.0%	-7.0% (Power reduction)
Duct and fins	-9.0%	-10.5%

MO4708-1001 - 57k Bulker (Speed-Power Trial Analysis) xls

Print: 28.10.10

17

becker marine systems

MSH

Mewis Duct[®] - Experience Pressure pulses

PSD017_10_1, F:\k17_10_1\ASCII_100827_003.txt, HYKAT-DS-Auswertung-Version 2.10-rev. 01, PressurePulses.xls-Version 2.0

Fig. 1: Hull Pressure Amplitudes (Full Scale) Condition 2 - without Mewis Duct - without Saver Fins 158,000 tdw COT

Mewis Duct[®] - Experience Pressure pulses

PSD017_10_1, F:\k17_10_1\ASCII_100826_006.txt, HYKAT-DS-Auswertung-Version 2.10-rev. 01, PressurePulses.xls-Version 2.0

Fig. 1: Hull Pressure Amplitudes (Full Scale) Condition 4 - with Mewis Duct - without Saver Fins

158,000 tdw COT

Mewis Duct[®] - Experience Cavitation Behavior

without Mewis Duct®

with Mewis Duct®

Mewis Duct[®] - Experience Hub Vortex

without MD

31,000 tdw MPV

Mewis Duct[®] - Experience Course Stability

Model	test: 46,000	0 tdw Tanker	r, SSPA	
Zig-Zag-Tests 10°/10°	IMO-Criterion	w/o MD	with MD	MD/without
1st overshoot (°)	17,2	17,0	14 <mark>,5</mark>	-15%
2nd overshoot (°)	31,8	40,6	31,4	-23%
Tactical diameter/Lpp	5,00	2,75	2,84	3%

2000

Full S	Scale trial: 16	3,000 tdw B	ulker	
1st overshoot (°)	20,0	10,5	9,0	-14 %
2nd overshoot (°)	35,0	26,9	22,0	-18 %

Svardal/Mewis, Experience with Mewis Duct^{*}, 3rd Ship Efficiency Conference, Hamburg 2011

Mewis Duct[®] - Case Study

Installation of a Mewis Duct[®] on a 45,000 tdw Multi Purpose Carrier

Costs

- Price, ship set price, based on three vessels
- Installation
- Capital costs Sum of costs

abt.	220,000 \$
abt.	30,000 \$
abt.	25,000 \$
abt.	275,000 \$

Saving in costs by MD

- 6% power reduction abt.
- 220 days / year abt.

1,300 \$ / day* 286,000 \$ / year

ROI (Return of Investment) about 1 year!

* at an actual bunker price of 600 \$/t

MSH

Mewis Duct[®] - Summary I

 Power reduction up to 8%, that means up to 8% less emissions

 Reduction of propeller induced pressure pulses and tip cavitation, that leads to less vibration in the aft ship

- Small improvment of course stability, that leads to a small additional power reduction

MSH

Svardal/Mewis, Experience with Mewis Duct[®], 3rd Ship Efficiency Conference, Hamburg 2011

Mewis Duct[®] - Summary II

 The Mewis Duct[®] is a new Energy-Saving Device which has been developed for full-form slower ships, allowing fuel savings of up to 8 %.

- The Mewis Duct[®] is ideally suited for both new-build and retrofit applications.
- The Return of Investment (ROI) is about 1 year.

Invention and design : Friedrich Mewis, Dresden Calculations: IBMV, Rostock

Model tests:

HSVA, Hamburg; SVA, Potsdam; SSPA, Göteborg; MARINTEK, Trondheim; HMRI, Ulsan; MARIN, Wageningen; FORCE, Brøndby

Financing, development, construction and marketing: Becker Marine Systems, Hamburg

becker marine systems

Three Years of Experience with the Mewis Duct[®]-A Contribution to Ship efficiency

AL

STAR ISTIND Grieg Star Shipping first vessel with MD in full scale September 2009

We thank you very much for your attention

MSH

Mewis Duct[®] - Experience Duct Thrust

Main goal: Improvement of wake, and thrust generation

