

Fuel- and Cost-Savings by Hydrodynamic Measures

by
Jan Øivind Svardal, Grieg Shipping Group, Bergen, Norway
Friedrich Mewis, Mewis Ship Hydrodynamics, Dresden, Germany

Fuel- and Cost-Savings by Hydrodynamic Measures

Contents

- 1. The Grieg Group, conception
- 2. Optimisation of a newbuilding, K-class vessel
- 3. Optimisation of a ship in service, J-class vessel
- 4. Comparison of possible measures for different ships
 - trim optimisation
 - speed optimisation
 - power saving devices
- 5. Summary

The Grieg Group

- Established in 1884
- Family owned (4th generation)
- Ship owning (incl. operation and ship management), seafood, ship broking, logistics, insurance broking, wind mills, navigation equipment and asset management
- Headquarters in Bergen. Several offices in Norway and abroad

Grieg Shipping Group - Grieg Star Shipping - Grieg International Grieg Seafood - Grieg Logistics - Joachim Grieg & Co. - Aon Grieg Grieg Investor- MARIS - NORWIND

Grieg Foundation

- Registered charity
- Holder of 25% of the shares of the Grieg Group operating companies
- Primary objective is to support SOS Children's Villages, in addition substantial contributions are given to aid medical research, humanitarian causes and cultural activities.

Fuel- and Cost-Savings by Hydrodynamic Measures Jan Svardal (N) & Friedrich Mewis (D)

Newbuilding K-class vessel (built 2009 - 2010)

Main particulares:

Lpp = 197.40

B = 32.20

Tdes = 12.00

V = 16.0 kts

 $P_{\rm D} = 9{,}313 \, {\rm kW}$

DWT = 49,900 t

Open Hatch General Cargo Carrier:

- 2x70 tons Gantry cranes,
- 11 box shaped holds,
- Dehumidification system for cargo

Target: 20 % energy reduction of the whole fleet through hydrodynamic and other measures by 2015!

K-class vessel

Improvement by hydrodynamic measures:

Result of collaboration with MSH

Measure	Remark	Power reduction	Costs reduction
		%	%
Improvement of bow lines	-	2.0	0.9
Trim optimisation	average	(3.0)	(1.4)
50%	realizable	1.5	0.7
Speed reduction	calculated	(30.0)	(3.0)
50%	realizable	15.0	1.5
Power saving device	PBCF	3.0	1.4
Total reduction	absolute	21.5	4.5
Total reduction	approximate	20 - 23	4 - 5

Note: All figures are approximate only

These figures will be checked permanent by an "Energy Monitoring System"

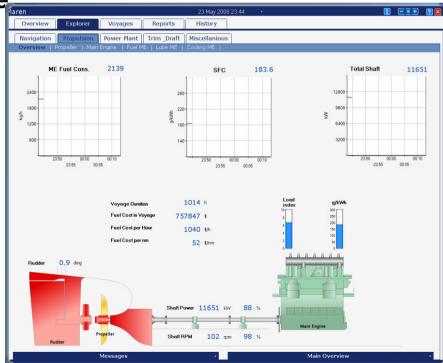
K-class vessel

Energy Monitoring System

Interfaces:

- Fuel oil module (Density and Viscosity measurements). M.E. and Aux. Eng.

- Torque meter on tail shaft - Main Engine


- Generator power

- Alarm and Monitoring system

- VDR (examples: speedlog, GPS, wind)

- ECDIS information – route planning

- Loading computer

K-class vessel

Energy Monitoring System – Marorka (Iceland)

Software modules:

- > Propulsion plant
- > Trim optimisation
- Power plant (partly)

Results:

- > Monitoring energy efficiency
- History trend logging
- > Trim optimisation guiding
- > Report generator user defined
- Higher energy awareness for the ship crew

J-class vessel (built 2004 - 2006)

Main particulars:

Lpp = 187.00

B = 31.00

Tdes = 12.02

V = 16.0 kts

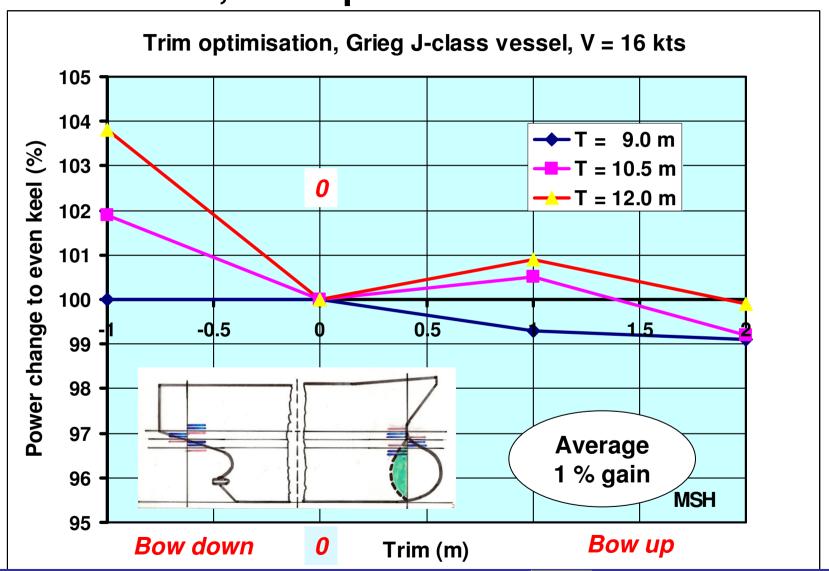
 $P_{\rm D} = 8,151 \, {\rm kW}$

DWT = 46,200 t

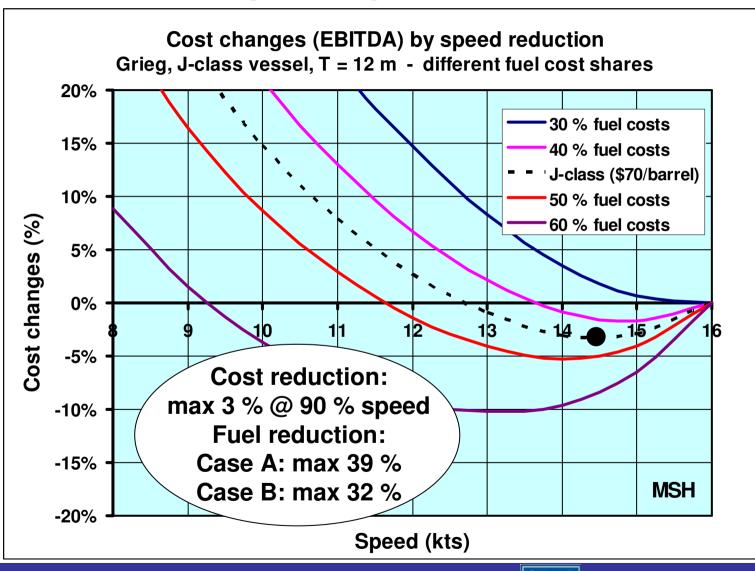
Open Hatch General Cargo Carrier:

- 2x70 tons Gantry cranes,
- 11 box shaped holds,
- Dehumidification system for cargo

Examinated measures for cost and fuel reduction:


- Trim optimisation, model tests
- Speed reduction, calculations
- Power saving device, retrofit of a Mewis Duct®

J-class vessel, trim optimisation


Fuel- and Cost-Savings by Hydrodynamic Measures Jan Svardal (N) & Friedrich Mewis (D)

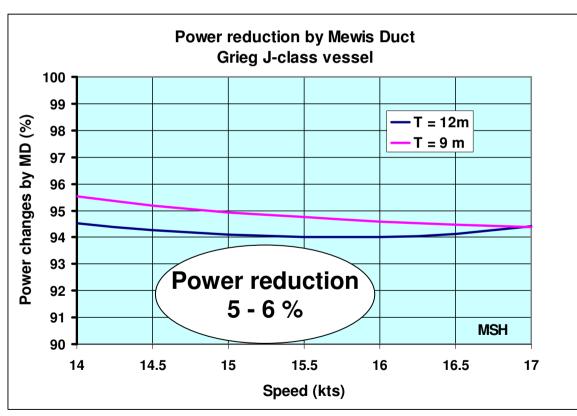
J-class vessel, speed optimisation

Case A: slow speed

Case B: adjusted fleet

Fuel- and Cost-Savings by Hydrodynamic Measures Jan Svardal (N) & Friedrich Mewis (D)

J-class vessel, power saving devices



J-class vessel, power saving devices

As power saving device was selected the Mewis Duct® (Mewis Duct® is offered by Becker Marine Systems, Hamburg)

CFD- calculations and model tests show more than 5 % power reduction!

Model test result:

T = 12 m

V = 16 kts:

6 % power reduction or 0.27 kts higher speed

Summary J-class vessels achievable power and cost reductions

Ship type	J-class		
	Ship in service		
Measure	Reduction		
	Power	Costs	
	%	%	
Improvement of ship lines	-	-	
Trim optimisation (50%)	0.5	0.2	
Speed reduction (50%)	16.0	1.5	
Power saving device	6.0	2.7	
Total reduction	22.5	4.4	

Note: All figures are approximate only

Summary K- and J-class vessels achievable power and cost reductions

Ship type	J-cl	ass	K-class		
	Ship in	service	Newbu	ilding	
Measure		Redu	ction		
	Power Costs		Power	Costs	
	%	%	%	%	
Improvement of ship lines	-	-	2.0	0.9	
Trim optimisation (50%)	0.5	0.2	1.5	0.7	
Speed reduction (50%)	16.0	1.5	15.0	1.5	
Power saving device	6.0	2.7	3.0	1.4	
Total reduction	22.5	4.4	21.5	4.5	

Note: All figures are approximate only

Summary, achievable power and cost reductions

K-class vessel built 2009 - 2010

J-class vessel built 2004 - 2006

Achievable savings:

Fuel 20 - 23 %

Costs 4 - 5 %

21 - 24 %

4 - 5 %

Fuel- and Cost-Savings by Hydrodynamic Measures Jan Svardal (N) & Friedrich Mewis (D)

Study for 4 very varying ships: - Trim optimisation

- Speed reduction
- Power saving device

1. Heavy Lift Multipurpose Dry Cargo Vessel 12,700 DWT

2. Very Large Crude Oil Carrier 300,000 DWT

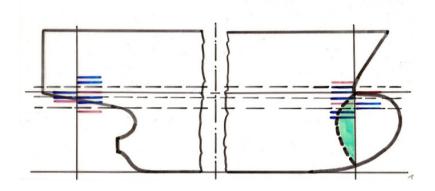
3. Container Feeder Vessel 1,700 TEU

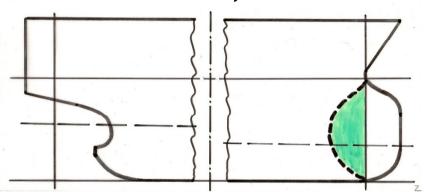
4. Very Large Container Vessel 13,500 TEU

Fuel- and Cost-Savings by Hydrodynamic Measures Jan Svardal (N) & Friedrich Mewis (D)

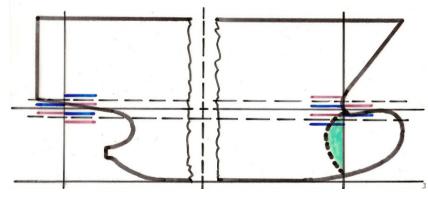
Main particulars, ships in study

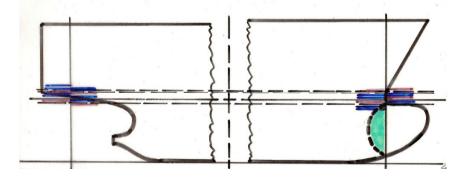
Case N	No	1	Grieg J	2	3	4
Ship	type	Bulker	J-class	Tanker	Container	Container
Si	ze	12k	46k	300k	1,700TEU	13,500TEU
Lpp	m	130.00	187.00	324.00	165.00	350.00
В	m	21.00	31.00	60.00	27.90	51.20
T	m	7.50	12.00	20.00	8.50	14.00
СВ	•	0.79	0.80	0.81	0.65	0.69
DP	m	4.90	7.00	9.70	6.60	8.90
PD	kW	4,464	8,151	22,450	12,250	56,000
n	rpm	130	91	73	101	100
VD	kts	15.20	16.00	15.50	20.00	24.60
Fn	•	0.21	0.19	0.14	0.26	0.22
CTh	-	1.60	1.31	2.32	1.00	1.25



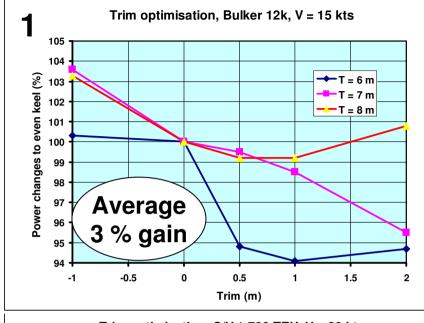


Trim optimisation

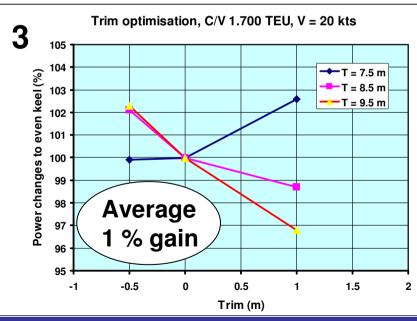

1. Bulker 12k, T = 7.5 m

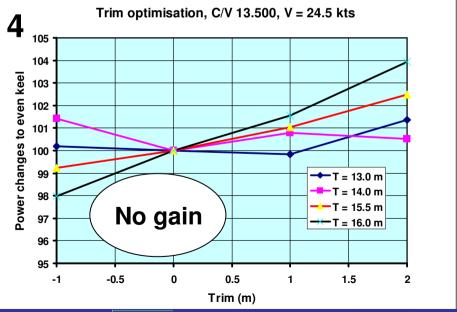

2. Tanker 300k, T = 20.0 m

3. C/V 1,700 TEU, T = 8.5 m



4. C/V 13,500 TEU, T = 14.0 m





VLCC, 300k Change of trim not possible!

Fuel- and Cost-Savings by Hydrodynamic Measures Jan Svardal (N) & Friedrich Mewis (D)

No gain

Trim optimisation

Summary

Case	Case No 1 G		1 Grieg J 2		3	4
Ship t	type	Bulker	J-class	Tanker	Container	Container
Siz	е	12k	46k	300k	1,700TEU	13,500TEU
VD	kts	15.20	16.00	15.50	20.00	24.60
Fn	-	0.21	0.19	0.14	0.26	0.22
CTh	-	1.60	1.31	2.32	1.00	1.25

Trim optimisation, averaged power reductions:

ΔPD % 3.0	1.0	0	1.0	0
-----------	-----	---	-----	---

Note: About 50 % of the these averaged power reductions are realizable only

Speed optimisation

Mathematical model takes into consideration:

- speed power curve of the ship
- engine behaviour at low load operation
- monetary losses due to later arrival
- cost share value = fuel costs / total costs

(the presented cost share figures are valid for 100 % speed)

Two cases: A – the vessel simply operate at slower speed

B – adjusted fleet with constant transport capacity

The actual amount of cost share value depends mainly on:

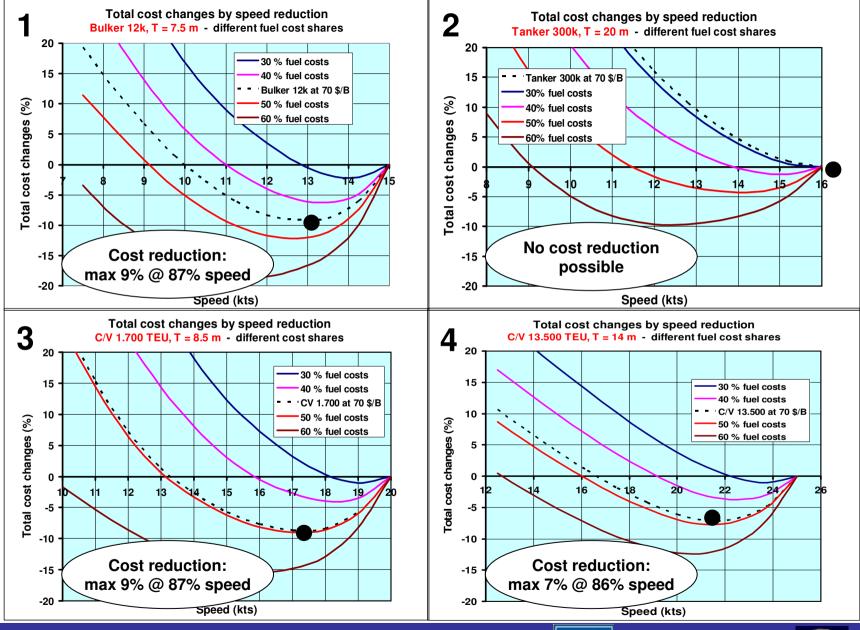
- fuel costs

But also on: - operation costs

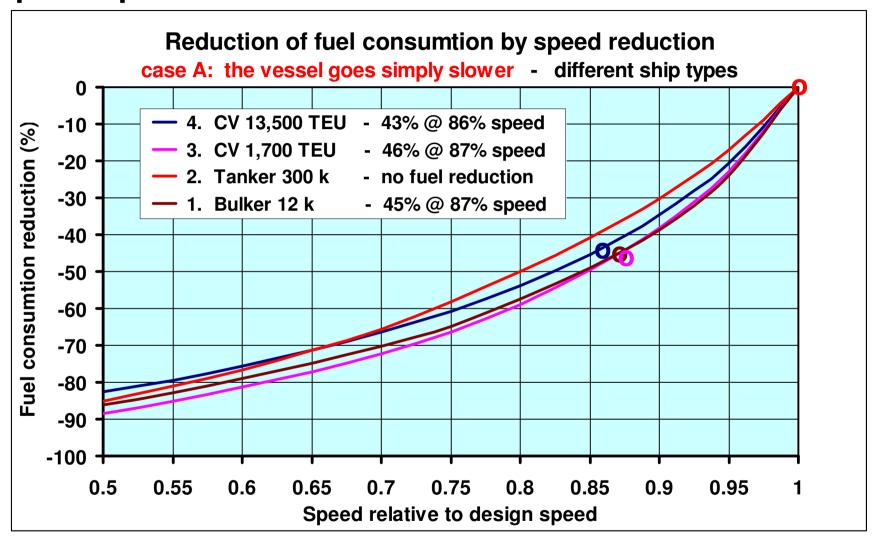
- capital repayment

- interest repayment

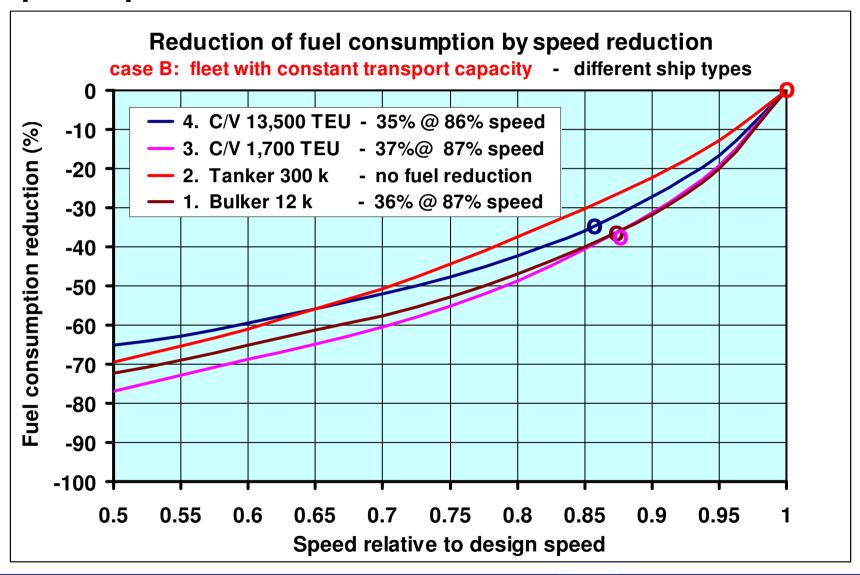
- cargo handling costs


- maintenance costs

total costs


Fuel- and Cost-Savings by Hydrodynamic Measures Jan Svardal (N) & Friedrich Mewis (D)

Speed optimisation



Speed optimisation

Speed optimisation, summary

Case No	1	Grieg J	2	3	4
Ship type	Bulker	J-class	Tanker	Container	Container
Size	12k	46k	300k	1,700TEU	13,500TEU

Speed optimisation, \triangle costs at optimum speed:

VD	100%	15	16	16	20	25
Vopt.	kts	13.1	14.5	>16	17.4	21.5
Δ Costs	%	9	3	0	9	7

Speed optimisation, \triangle fuel consumption at optimum speed:

Case A	%	45	39	0	46	43
Case B	%	36	32	0	37	35

positive % are reductions at costs & fuel consumption

Note: About 50 % of these averaged power reductions are realizable only

Power saving devices (PSD)

"Power Saving Devices"
denote additional components positioned close to the propeller

For all vessels the following are compared:

- Pre ducts 1. WED Schneekluth Duct

2. SILD Sumitomo Integrated Lammeren Duct

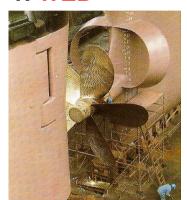
- Pre swirl fin systems 3. SVA SVA - fin system

4. PSS DSME - Pre Swirl System

- Hub vortex optimiser 5. Costa Bulb (rudder bulb)

6. PBCF Propeller Boss Cup Fin (Mitsui)

- Combined system 7. MD Mewis Duct® (Becker Marine Systems)


Power saving devices (PSD)

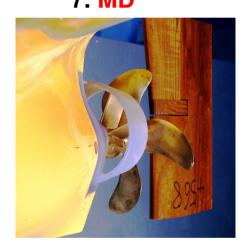
Pre ducts

Pre fins

Combined device

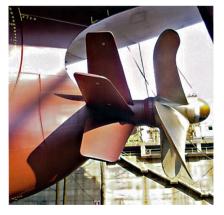
1. WED

3. SVA



5. Costa

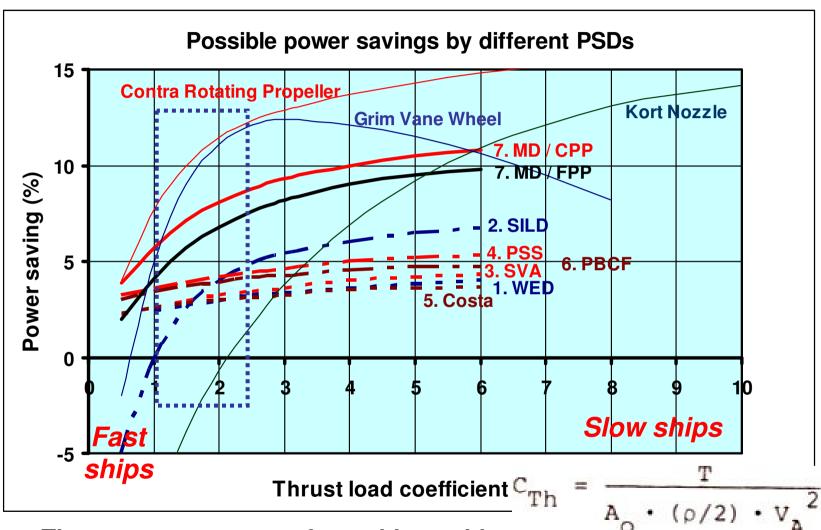
Hub devices


7. MD

2. SILD

4. PSS

6. PBCF



GRIEG

Power saving devices (PSD), possible power reductions

Note: These curves can vary from ship to ship

Power saving devices (PSD), possible power reductions

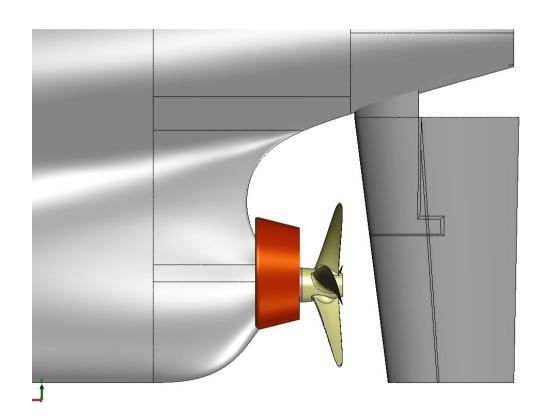
Fuel- and Cost-Savings by Hydrodynamic Measures Jan Svardal (N) & Friedrich Mewis (D)

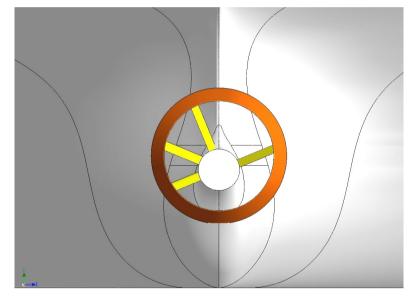
Power saving devices (PSD), possible power reductions

Case	No	1	Grieg J	2	3	4
Ship ty	уре	Bulker	J-class	Tanker	Container	Container
Size)	12k	46k	300k	1,700TEU	13,500TEU
VD	kts	15.20	16.00	15.50	20.00	24.60
CTh	-	1.60	1.31	2.32	1.00	1.25

Power saving devices, possible power reductions

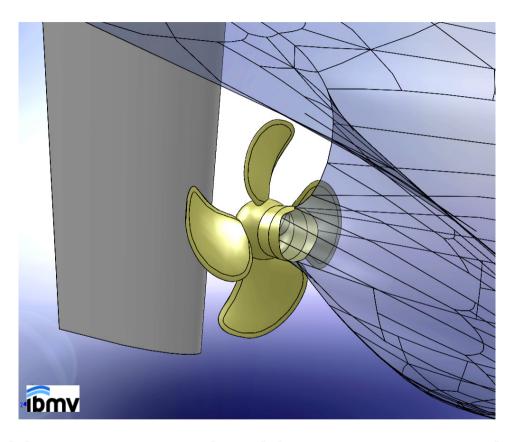
WED	%	2.9	2.8	3.4	2.5	2.7
SILD	%	2.8	1.7	4.5	-	-
SVA	%	2.8	2.7	3.3	2.6	2.8
PSS	%	3.8	3.5	4.3	3.2	3.4
Costa	%	3.2	3.1	3.3	2.6	2.8
PBCF	%	3.6	2.9	3.4	2.6	2.6(?)
MD	%	7.7	6.0	7.3	3.5	-



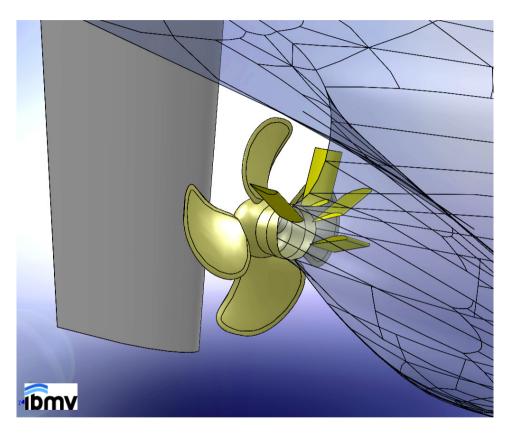


Mewis Duct®

Principle arrangement



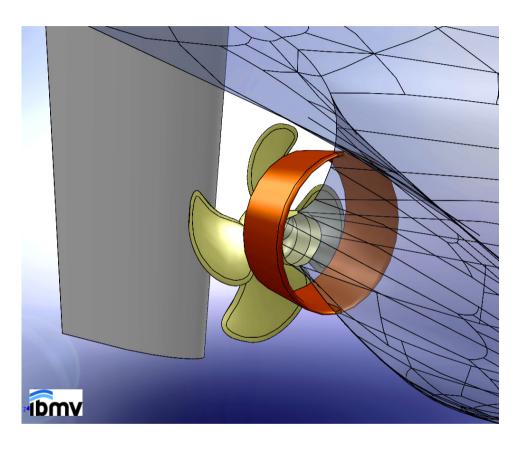
Mewis Duct®


Aft-body with propeller and rudder, no power saving device

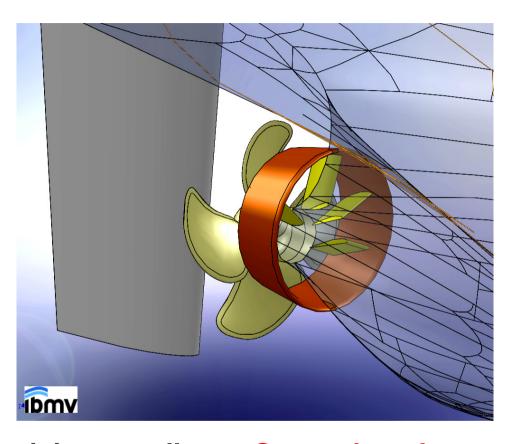
Mewis Duct®

PSS

1. Fins ahead the propeller


Generation of pre-rotation

Mewis Duct®


SILD

Mewis Duct®

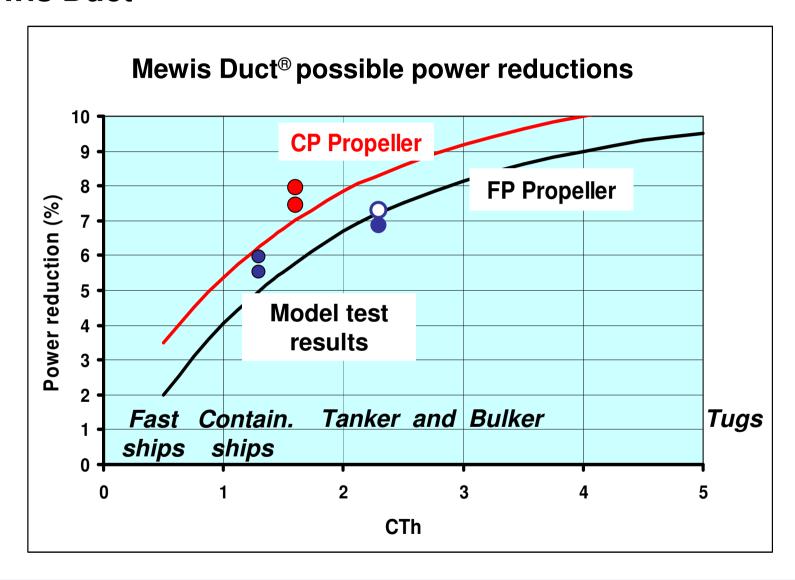
PSS

SILD

PBCF

- 1. Fins ahead the propeller
- 2. Duct ahead the propeller
- 3. Pre-swirl mainly inwards

Generation of pre-rotation
Direct flow to the inner radii, own thrust
Reduction of hub vortex losses


Mewis Duct[®] = Combination of these three components

res || |

Mewis Duct®

Mewis Duct®

STAR ISTINDGrieg Star Shipping

the vessel with the first Mewis Duct®

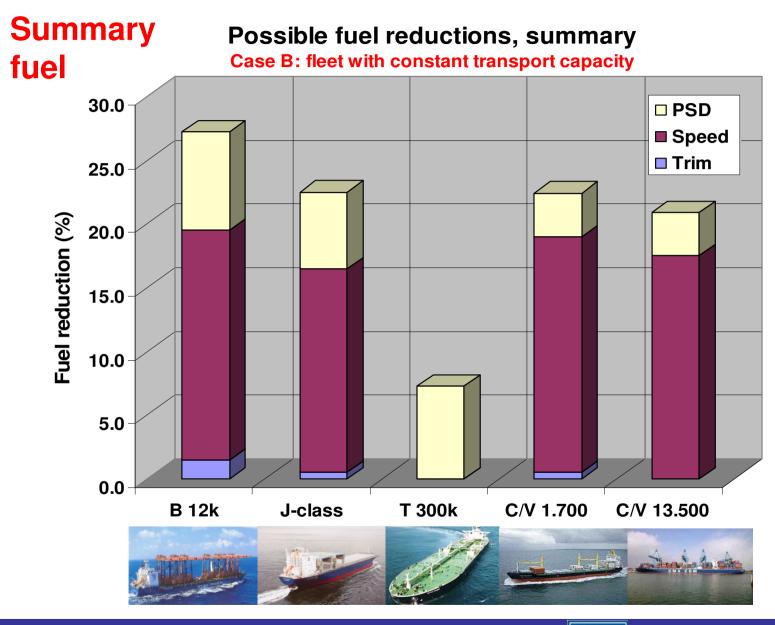
Summary, Possible fuel and cost savings, all measures

Case No	1	Grieg J	2	3	4
Ship type	Bulker	J-class	Tanker	Container	Container
Size	12k	46k	300k	1,700TEU	13,500TEU

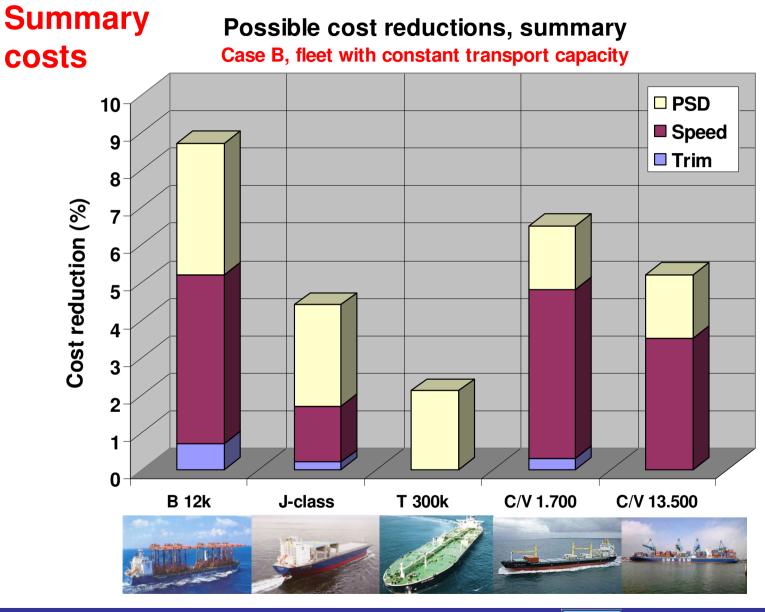
Possible power reduction by different measures, % power

Trim (50%)		1.5	0.5	0	0.5	0
Speed (50%)		18	16	0	18.5	17.5
PSD		7.7	6	7.3	3.5	3.4
Sum power	%	27.2	22.5	7.3	22.5	20.9

Possible cost reduction by different measures, % total costs


Trim (50%)		0.7	0.2	0	0.3	0
Speed (50%)		4.5	1.5	0	4.5	3.5
PSD		3.5	2.7	2.1	1.7	1.7
Sum costs	%	8.7	4.4	2.1	6.5	5.2

Note: Trim optimisation and Speed reduction: 50 % of estimated gain is realizable only!



We thank you very much for your attention!

